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Abstract
We further investigate the strange spectra of the Orr–Sommerfeld operator using
the plane Poiseuille flow as a basic stationary flow for normal fluids in the
two-fluid system of helium II by a verified preconditioned complex-matrix
solver. The strange spectra are composed of one pair of eigenvalues with the
same phase speed (real part) but different amplification factors (imaginary part)
corresponding to the specific Reynolds number and wavenumber we select.
These kinds of degeneracy disappear for Reynolds number around 400, where
the ‘drifting’ of the complete spectra imposes much more complexity on the
searching.

PACS numbers: 0230J, 0270H, 4711, 4720

The recent papers of Baggett et al [1], Jackson et al [2] and Elofsson and Alfredsson [3] revived
an interest in the study of the detailed spectra of the linear stability equation (Orr–Sommerfeld
(OS) equation; the basic flow could be shear flow or plane Poiseuille flow) for the description
of the hydrodynamical transition to turbulence in normal fluids (instead of superfluids). Plane
Poiseuille flow is one of the fundamental base-flow types for the wall-bounded parallel-flow-
instability research regime. The usual approach to considering linear stability is through
the OS equation. Following the usual assumptions of linearized stability theory, we have
vi(xi, t) = v̄i (xi) + v′

i (xi, t), and similarly, p(xi, t) = p̄(xi) + p′(xi, t) for the velocity and
pressure terms in the incompressible Navier–Stokes equations. Then by substituting these
into the dimensionless two-dimensional Navier–Stokes equation, and eliminating the pressure
terms, the linearized equation or so-called OS equation, which governs the variation of the
disturbances, is

(D2 − α2)2φ = iαR[(ū− c)(D2 − α2)φ − (D2ū)φ] (1)

whereR = ρumaxh/µ is the Reynolds number based on the half channel-width and ū = 1−y2

is the (mean) basic velocity profile of the flow. The stream function for the disturbance, �,
such that u′ = −∂�/∂y, v′ = −∂�/∂x, may be assumed to have the form �(x, y, t) =
φ(y) exp[iα(x − ct)] in the usual normal-mode analysis, α is the wavenumber (real) and c is
cr + ici. This is a kind of Tollmien–Schlichting transversal wave: cr is the ratio between the
velocity of propagation of the wave of perturbation and the characteristic velocity, ci is called
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the amplification factor and α is equal to 2πL−1, where L is the wavelength of the Tollmien–
Schlichting perturbation [4]. Boundary conditions are φ(1) = φ′(1) = φ(−1) = φ′(−1) = 0.
In the usual temporal stability problem, in which the growth or decay of a disturbance in time
is considered, we take α and R to be real and then treat the (complex) wave-speed c as the
eigenvalue parameter of the problem.

However, the OS operator is non-normal [5–7], so the eigenfunctions, though
complete, may be nearly linearly dependent and the eigenvalues may be highly sensitive to
perturbations [8] (even though our previous attempt [8], in parts, had matched the observation
that the propagation speed of the front part of a certain turbulent spot is the same as two-thirds
of the centre-line velocity in plane Poiseuille flow). These would induce many difficulties if
we want to start with numerical approaches, such as spectral methods, even though this method
is well known to be essentially very accurate [9] for certain cases. For example, a previous
linear stability approach by Orszag in 1971 [10] showed that plane Poiseuille flow is stable if
the Reynolds number is less than the critical one Rc ∼ 5772.

However, recent research, inspired by the works in [1–3], did show that Rc could be much
smaller than 5772 once other mechanisms [11–14] and relaxed boundary conditions [15] were
taken into account.

As a supplement to our previous works [15], here we use the verified code [8, 15], which
was a modified approach to [10] via using the complex-matrix-preconditioning technique (also
a modified approach to [16] and [17]) to report some interesting spectra, which might inspire
further research for those cited in [1–3, 5–7, 11–14]

During the period in which we verified our results, we incidentally found certain ‘strange’
spectra which had never been mentioned in the literature [18]. These spectra, being one
pair of eigenvalues for plane Poiseuille flow corresponding to the specific Reynolds number
and wavenumber, have almost the same real parts (the phase speed) but different imaginary
parts (the amplification factor). Since then, we have begun to search all these spectra in the
direction of decreasing Reynolds number and increasing wavenumber, but the behaviour of
these strange spectra disappears as the Reynolds number approaches 400. In this paper we
only present several specific spectra up to Reynolds number = 500, wavenumber = 1.820.
These results could, at least, serve as clues to the study of the normal fluids when we consider
the two-fluid system of helium II [15]. Note that, as pointed out by Reddy and Henningson
(1993) [19], due to the non-normality of the OS governing operator, even though our approach
is linear stability analysis, the results still give the fact that a subcritical transition can occur
for the plane Poiseuille flow [5–7, 11–14].

We use the orthogonal polynomial expansion to approximate the governing equations and
boundary conditions and solve the eigenvalue problem by using the verified code [8], which
used the spectral method [9] based on the Chebyshev-polynomial-expansion approach, since
the equation and boundary conditions were discretized. The algebraic equation is

1
24

N∑

p=n+4
p≡n(mod 2)

[p3(p2 − 4)2 − 3n2p5 + 3n4p5 + 3n4p3 − pn2(n2 − 4)2]ap

−
N∑

p=n+2
p≡n(mod 2)

{[2α2 + 1
4 iαR(4f − 4λ− cn − cn−1)]p(p

2 − n2)

− 1
4 iαRcnp[p2 − (n + 2)2] − 1

4 iαRdn−2p[p2 − (n− 2)2]}ap
+iαRn(n− 1)an + {α4 + iαR[(f − λ)α2 − 2]}cnan
− 1

4 iα3R[cn−2an−2 + cn(cn + cn−1)an + cnan+2] = 0 (2)
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Table 1. Strange spectra for plane Poiseuille flow.

R α Mode no cr ci Rα

500 1.820 142 24 17 0.490 069 073 −0.060 422 910.071
19 0.490 069 076 −0.350 344

750 1.525 106 28 15 0.435 777 708 −0.038 060 1143.80
17 0.435 777 709 −0.325 452

1000 1.368 624 41 15 0.400 199 366 −0.028 452 1368.624
17 0.400 199 366 −0.307 121

1200 1.284 273 8 14 0.379 044 858 −0.023 95 1541.129
16 0.379 044 872 −0.295 44

1500 1.193 151 27 13 0.354 607 584 −0.019 635 1789.727
15 0.354 607 585 −0.281 23

2800 0.990 289 26 10 0.294 247 244 −0.012 0984 2772.81
12 0.294 247 244 −0.242 8658

5750 0.820 038 05 9 0.237 490 383 −0.007 8836 4715.219
10 0.237 490 383 −0.202 685

for n � 0, f = 1, where cn = 0 if n > 0, and dn = 0 if n < 0, dn = 1 if n � 0. Here, λ ≡ c

is the complex eigenvalue. The boundary conditions become

N∑

n=0
n≡0(mod 2)

an = 0
N∑

n=0
n≡0(mod 2)

n2an = 0 (3)

N∑

n=1
n≡1(mod 2)

an = 0
N∑

n=1
n≡1(mod 2)

n2an = 0. (4)

After we obtained the algebraic system equations (AX = cBX), where A, B and X are all
complex matrices, we modified the Osborne preconditioning algorithm [17], which is for a
real matrix, to handle our complex matrices [20].

In brief [8, 15, 18], this algorithm produces a sequence of matrices Ak, (k = 1, 2, . . .)
diagonally similar to A such that for an irreducible A:

(i) Af = limk→∞ Ak exists and is diagonally similar to A,
(ii) ‖Af ‖2 = inf(‖D−1AD‖2), where D ranges over the class of all non-singular diagonal

matrices,
(iii) Af is preconditioned in ‖ · ‖2 and
(iv) A and D−1AD produce the same Af .

Then we transform these matrices to Hessenberg form [21] and use the complex QR/LR
solver [22, 23] to find the complex eigenvalues related to different Reynolds numbers and
wavenumbers. The preliminary verified results of this numerical code [8, 15] had been done
in comparison with the bench-mark results of Orszag obtained in 1971. For example, for
R = 10 000.0, α = 1.0 of the test case, plane Poiseuille flow [10], we obtained the same
spectrum as 0.237 526 48 + i0.003 739 67 for cr + ici [8], which Orszag obtained from CDC
7600 in 1971 [10]. This code did not have the numerical problems [24] which are common
in using the spectral method. Then we obtained (through tremendous searching using double-
precision machine accuracy) the spectra shown in table 1.

We can say that this kind of strange spectrum will premature any instability mechanism
considering the temporal growth of the disturbances [3, 6, 7, 12–14], even though our spectra
are for stationary states. This can be easily understood if we go back to the theory of a
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system of differential equations. Because of this ‘degeneracy’, the solutions must contain
terms of eigensolutions (exponential functions) multiplied by t , and thus favour larger
transient growth for this mode. Moreover, this ‘degeneracy’ might induce something like
resonances between vertical velocity perturbation-waves and a vorticity perturbation-wave or
other three-dimensional waves [6, 12, 25–27]. All these effects can result in earlier linear
flow instability and a further stage (via complicated interactions): transition as demonstrated
in [1–3, 5–7, 11–14]. We notice that some boundary conditions might also lead to smaller
critical Reynolds number as reported in [15]; our further study will be (i) whether similar
effects are observed in the ‘strange’ spectra and (ii) whether there is any link between the
present results and those reported in [28].
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